wird in neuem Tab geöffnet
E-Medium
Machine Learning and AI Foundations: Classification Modeling
Verfasser:
Suche nach diesem Verfasser
McCormick, Keith (Verfasser)
Mehr...
Jahr:
2018
Verlag:
LinkedIn
Mediengruppe:
EMedien
Vorbestellbar:
Ja
Nein
Voraussichtlich entliehen bis:
Download
Zum Download von externem Anbieter wechseln - wird in neuem Tab geöffnet
Standorte | Status | Vorbestellungen | Frist |
Standorte:
|
Status:
Verfügbar
|
Vorbestellungen:
0
|
Frist:
|
One type of problem absolutely dominates machine learning and artificial intelligence: classification. Binary classification, the predominant method, sorts data into one of two categories: purchase or not, fraud or not, ill or not, etc. Machine learning and AI-based solutions need accurate, well-chosen algorithms in order to perform classification correctly. This course explains why predictive analytics projects are ultimately classification problems, and how data scientists can choose the right strategy (or strategies) for their projects. Instructor Keith McCormick draws on techniques from both traditional statistics and modern machine learning, revealing their strengths and weaknesses. Keith explains how to define your classification strategy, making it clear that the right choice is often a combination of approaches. Then, he demonstrates 11 different algorithms for building out your model, from discriminant analysis to logistic regression to artificial neural networks. Finally, learn how to overcome challenges such as dealing with missing data and performing data reduction. Note: These tutorials are focused on the theory and practical application of binary classification algorithms. No software is required to follow along with the course.
Keine Rezensionen gefunden.
Mehr...
Jahr:
2018
Verlag:
LinkedIn
Aufsätze:
Zu diesem Aufsatz wechseln
Suche nach dieser Systematik
Suche nach diesem Interessenskreis
Beschreibung:
02:00:59.00
Suche nach dieser Beteiligten Person
Sprache:
Englisch
Mediengruppe:
EMedien